Reaction kinetics of a-CuInSe2 formation from an In2Se3/CuSe bilayer precursor film

نویسندگان

  • W. K. Kim
  • S. Kim
  • S. Yoon
  • R. M. Kaczynski
  • R. D. Acher
  • O. D. Crisalle
  • V. Craciun
چکیده

The reaction pathway and kinetics of a-CuInSe2 formation from a glass/In2Se3/CuSe polycrystalline bilayer precursor film were investigated using time-resolved, in situ high-temperature X-ray diffraction. Bilayer glass/In2Se3/CuSe precursor films were deposited on thin glass substrates in a migration enhanced molecular beam epitaxial deposition system. These films were then temperature ramp annealed or isothermally soaked while monitoring the phase evolution. The initial In2Se3 and CuSe reactant phases were directly transformed to a-CuInSe2 without any detectable intermediate phase. Kinetic parameters were estimated using the Avrami and parabolic diffusion controlled reaction models. The parabolic reaction model fitted the experimental data better than the Avrami model over the entire temperature range (230–290 8C) of the set of isothermal experiments, with an estimated activation energy of 162 (G5) kJ/mol. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction kinetics of CuInSe2 thin films grown from bilayer InSe/CuSe precursors

The reaction kinetics for the formation of CuInSe2 thin films from a stacked bilayer precursor consisting of InSe and CuSe was studied by means of in situ high-temperature x-ray diffraction. In particular, the isothermal phase evolution of the glass/InSe/CuSe precursor was observed at different temperatures. The pathway produces a CuInSe2 diffusion barrier layer that also functions as a nucleat...

متن کامل

Reaction kinetics of CuGaSe2 formation from a GaSe/CuSe bilayer precursor film

The reaction pathway and kinetics of CuGaSe2 formation were investigated by monitoring the phase evolution of temperature ramp annealed or isothermally soaked bilayer glass/GaSe/CuSe precursor film using time-resolved, in situ high-temperature X-ray diffraction. Bilayer GaSe/CuSe precursor films were deposited on alkali-free thin glass substrates in a migration-enhanced epitaxial deposition sys...

متن کامل

In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction

In situ high-temperature X-ray diffraction was used to investigate the reaction mechanism and kinetics of a-CuInSe2 formation from Cu–In precursors during selenization. The precursor films were deposited in a migration-enhanced molecular beam epitaxial reactor on Mo-coated thin glass substrates. During the selenization, the formation of CuSe was observed, followed by its transformation to CuSe2...

متن کامل

Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature

High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0...

متن کامل

ONE STEP ELECTRODEPOSITION OF CuInSe2 THIN FILMS

Formation of CuInSe2 (CIS) thin films from aqueous solution containing citrate as complexing agent is reported. The surface morphology and the composition of the deposited films are characterized by scanning electron microscopy (SEM). The texture of the deposits and their compositions are analyzed by X-ray diffraction and transmission electron microscopy (TEM). Annealing of the films at 350°C i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005